How much chemistry do you know?

Q#	Question	How to answer it	
1	How do ionic compounds	They must be mixed in water (Aq). They must be in solutions form BECAUSE	
	conduct electricity?	they dissociate into ions in water	
2	How do metals conduct	They must be in liquid or solid form. BECAUSE OF FREE MOBILE ELECTRONS	
2	electricity	will carry electricity.	
3	what happens to hoble gases when electric current runs	They glow colors as the electrons return from excited state (higher energy	
	through them?	level to the ground state (lower energy level).	
	What about flame test		
	justification		
4	Why do I crisscross or reverse	To find the ion formula (charges) which help you	
	formula?	(1) Find the # of electrons lost or gained \rightarrow +2 charge means lost 2 electrons (2) Find group number of upknown element V X Q = X comes from group 1	
		(2) Find group number of distributive element x . $x_2^{0} = x$ comes from group 1. (3) Find roman numerals to name the <i>metals</i> bonded in jonic compounds.	
5		- Roman numerals are used to identify the charge of the metal they	
	What are the rules for writing	go on top as superscripts and provide the Ion Formula.	
	IONIC compounds formulas?	- Metals & Hydrogen are always written FIRST in compound formulas.	
		CRISSCROSS charges to find compound chemical formulas	
		Br I N CI H O F lonely elements are always in pairs Example: H is	
		Written as H ₂ .	
		Name Chromium VI Chloride	
		ION FORMULA (charges) Cr ⁺⁶ Cl ⁻¹	
		COMPOUND FORMULA (subscripts) CrCl ₆	
6			
	How do I name or write	For naming: USE prefixes mono, di, tri, tetra, penta, hexa, hepta, octa	
	of popmetals only)	For writing: the prefixes become the subscripts.	
	of nonnetals only)	ex. dimitrogen monoxide is N ₂ O	
		Prefixes mono to tetra must be memorized, the rest are on table P.	
		Never use the prefix mono with the first element	
7	How do I name Ionic	Naming:	
	Compounds (made of Metal +	- If the formula is 3 or more capital letters, the last 2 letters must come	
	Nonmetal).	from table E and the ending of the name must be the same as table E. Na.(SO.) \rightarrow Sodium sulf ATE	
		- If the formula has only 2 letters, the ending must be IDF	
		NaF \rightarrow Sodium Fluoride	
		- Metals that have multiple charges must have a roman numeral in the	
		name to represent the # of electrons lost of gained.	
		$Fe_2O_3 \rightarrow$ Iron III oxide \rightarrow reverse crisscross to find the charge of the metals	
		$Fe_2(SU_4)_3 \rightarrow$ Iron III sulfate \rightarrow reverse cross # outside parenthesis When there are no numbers to crisescross, the charge of the motel is the	
		- when there are no numbers to crisscross, the charge of the metal is the opposite of the charge of the poppetal or the polyatomic ion. Opposite	
		charges that have the same magnitude cancel each other.	
		FeO \rightarrow Iron II oxide \rightarrow Oxygen is -2 therefore Iron must be +2	
		$FeSO_4 \rightarrow$ Iron II Sulfate. SO ₄ (table E) is -2 therefore Fe must be +2.	
8	Naming / writing hydrocarbons	See table P, Table Q. notice the endings	

9	What are saturated	Single bonded carbons → alkANES (ANE ending)
	hydrocarbons	
10	What are unsaturated	Double bonded or triple bonded carbons $ ightarrow$ alkenes/alkynes ENE, YNE
	hydrocarbons	
11	How do I draw lewis dot	ASK yourself am I drawing a Lewis dot diagram of an
	diagrams?	Element
		- all you need is a symbol and VE dots
		Ionic compound (metals +nonmetals)
		- You need to BVICS $\rightarrow \underline{B}$ rackets; \underline{V} alence electrons (non for metals), (8
		for nonmetals); <u>ionic charges</u> ; <u>coefficients as displayed by compound</u>
		Molecular compound (nonmetals only)
		- Structure is dependent on the # of atoms present in the compound
		2 or 3 atoms = linear ex: HCl CO_2 4 atoms = trigonal pyramidal ex:
		NH_{2} , 5 atoms = tetrahedral, ex: CH ₄ , H ₂ O has a bent structure.
		- Each atom must have access to 8 valence electrons to be chemically
		stable except Hydrogen, it only needs two to be stable.
		- If an atom has 7 valence electrons, one of those 7 electrons bonds
		with another atom to gain access to an 8 th electron. If an atom has
		four valence electrons, all four of those valence electrons will bond
		with other atoms to gain access to four more electrons and achieve
		chemical stability. If an atom has 6 valence electrons, it will bond
		twice; Hydrogen will only bond once and so on.
12	Calculate atomic mass given	(%/100 *isotope mass A) + (%/100 *isotope mass B) +
	isotopes percentages	
13	How do I calculate mass	Mass = Proton (atom #) + neutrons
1.4		You need to know that atom # will always = proton # -> same thing!
14	How do I calculate neutrons	W = A# = 0
15	electrons for charged ions? Ex:	ACE Atom # - Charge = electrons
	Na ⁺¹	Act Atom - Charge - electrons
16	How do I calculate number of	Neutral atoms are neutral because positive Protons = negative electrons
	electrons for neutral atoms.	Since protons always = Atom #. Atom # shall = electrons. Protons are inside
	Ex. Na	the nucleus so # of P = nucleus charge. THINK ePNA _#
17	Calculate empirical formulas	Molecular formula / greatest common factor = empirical formula
18	What are the types of chemical	1- Synthesis: starts with 2 elements that combine to form one
	reactions	compound.
		2- Decomposition: starts with 1 compound that breaks down
		3- Single replacement: starts with a single element and a single
		compound. These reactions are possible if the lonely element is
		more active than the bonded element, see table J.
10	What are the types of organic	4- Double replacement: starts with 2 compounds
19	reactions	alement
	reactions	2- Substitution: Saturated hydrocarbon substitutes two of its
		hvdrogens with two group 17 elements
		3- Fermentation: Sugar + yeast \rightarrow Alcohol + CO ₂
		4- Combustions: hydrocarbon + $O_2 \rightarrow CO_2$ + H ₂ O
		5- Saponification: Fat + Base (OH ⁻) → Soap + Glycerol
		6- Esterification: Acid (tableK) + Alcohol(OH) → Ester(tableR) + Water
		7- Polymerization: individual hydrocarbons combine to make one
		long chain.

20	Types of nuclear reactions	1- Fission: produces lots of radioactive waste. Bombard a neutron
		with a U-235 isotope to split its nucleus and release energy.
		Fusion: produces no radioactive waste: <u>combine</u> two small
		<u>Hydrogen</u> isotopes to form <u>helium</u> and produce the <u>most amount</u>
		<u>of energy</u> . Like inside the stars.
		3- Transmutation: artificial (physically bombard particles), natural
		transmutation (one reactant spontaneously decays without
		interference)
21	How do I answer mass to mass	Mass to mass: The <u>total</u> sum of reactants' grams MUST EQUAL the <u>total</u> sum
	problems or charge to charge	of products' grams
	problems	Charge to charge, the total sum of reactants charges must = the total sum of
		products charges (charges do not have to match) but the number of moles
		of each atom on the reactants side must = the number of moles of each
		atom on the products side.'
		Ex: $2Fe + 3Cl_2 \rightarrow 2Fe^{+3} + 6Cl^{-1}$
22	How do I calculate the moles	Use the formula on table T. Moles = mass/gfm (gram formula mass)
	given mass or vice versa	
23	How do I calculate Gram	1- Most of the time it's given to you, but if not use the reference table or
	formula mass?	emmt.
24	What are ideal gas conditions	Same as beach day conditions high Temp, low pressure
25	What is electronegativity	It is the ability of an element to attract electrons.
26	Why should I care about	Because I need to figure out whether a BOND is polar!
	electronegativity difference	Polar = dissolve in water.
		If electronegativity difference is less than or equal to 0.4, you have a
		nonpolar covalent bond.
		If the electronegativity difference is above 0.4, you have a polar covalent
		bond.
		If the bond is between a metal and a nonmetal, you have a polar ionic bond.
		(Check table F). This is the most polar.
27	What is ionization energy	It is the energy needed to remove a loosely held electron.
28	What is the general trend of	Metals are low low losers
	metals and nonmetals	Nonmetals are high high gainers
	electronegativity and ionization	
	energy?	
29	What do I use table S for	To compare densities of elements, compare electronegativities, ionization
		energies, and ATOMIC RADIUS
30	What are the only liquid	Mercury (Hg) is a metal; Bromine (Br) is a nonmetal.
	elements on the periodic table	
31	What are some properties of	Malleable: bendable
	metals	Ductile: hammered into wires
		Have luster: shiny
		Conduct electricity and heat in liquid and solid phases BECAUSE OF FREE
		MOBILE ELECTRONS
		Located on the left side of the staircase
		Mostly solid therefore high melting and boiling points
32	What are properties of	They are brittle (break easily)
	nonmetals	Mostly gases.
		They are poor conductors of heat and electricity; no luster.
33	What are metalloids	All the elements above and below the stairs except Aluminum and
		Polonium They have properties of both metals and nonmetals. Silicone is
		used in computer chips because it is a semimetal therefore a
		semiconductor prevents electrical surge.

34		Isotopes: Same D-A _# pes. Different P-Mn-Structure
	What do I need to know about	Same density, Atom#, Protons, electrons, and spectrum
		Different properties, mass, neutrons, and structure
	Isotopes?	Allotropes: different structures of an element that have different properties.
	Isomers?	Example: O ₂ and O ₃ ; diamonds, coal, and graphite.
	Allotropes?	Isomers: different structures of compounds that have different functional
		groups but the same chemical formulas, they have different physical and
		chemical properties.
35	What is homogeneous	It is a uniform and consistent arrangement of particle
		All unsaturated and saturated solutions are homogeneous
		Super saturated solutions have a precipitate (residue) @ the bottom
		Compounds are homogenous because their particles are arranged in fixed
		uniform proportions.
36	What are the separation	Filtration: separates insoluble substances from water. Ex: sand from water
	techniques	Dissolved solutes and solvents go through filter paper, only insoluble solutes
		Can be separated by filtration.
		Distination: Separates inquids based on unrerent boining points. Liquids of
		Evaporation: Sonaratos Soluble salts from water
		Chromatography: sonarates substances based on their attractions to a gel
		medium
37	How do I draw particle	Flement
57	diagrams?	Identical Singular circles
		Diatomic molecule: BrINCIHOF
		Identical circles organized in pairs
		Compound
		2 or 3 different circles BONDED in the fixed proportions
		Mixture
		No specific pattern. Varying proportions
38	How do I answer Vapor	Table H: the boiling point is the intersection between each curve and the
20	pressure questions?	dashed line.
39	How do I answer chemical	By using the keywords: react, burn, corrode, decompose, color change,
40	Change questions	Combine with
40	change problems?	By using the keywords: break, crush, or phase change B_{1}
	change problems:	$S \rightarrow I = molt$ $I \rightarrow S = freeze$
		$1 \rightarrow 6$ - vanorization $6 \rightarrow 1$ - condensation (rain)
		$S \rightarrow G$ (dry ice) = sublimation $G \rightarrow S$ = Denosition (snow fall)
41	At which phase changes does	Melting evaporation sublimation
	potential energy increase?	¹⁶]
	potential energy mercuse.	121- gas
		temperature ¹⁰⁰ (°C) ₁₀₀
		60- boiling
		as melting / liquid
		-aa / solid
		-4) 1 heat absorbed
1	1	

42	At which phase changes does potential energy decrease?	Freezing, condensation, deposition
43	On the heating/cooling curve, at which lines does potential energy change?	At the horizontal lines. That is where phase changes occur (melt evap etc. # of horizontal lines determines number of phase changes. MAX # of horizontal lines must be only 2. In sublimation a solid changes directly to a gas therefore only one horizontal line is shown on a heating curve.
44	On the heating/cooling curve, at which lines does kinetic	At the slanted lines. That is where phases of matter are present (solid liquid gas)
45	How do I answer gas calculation problems?	See table T \rightarrow (P ₁ V ₁ /T ₁) = (P ₂ V ₂ /T ₂)
46	What is the only indirect relationship between pressure, volume and temperature?	The only indirect relationship is between pressure and volume.
47	What is STP	It's on table A: Standard temperature (273K) and standard pressure (1 atm)
48	How do I answer concentration problems	 Use the Molarity formula on table T: Molarity = moles/liters. Remember there is no abbreviation for moles but mol MaVa= MbVb Remember molarity is concentration and is abbreviated M. Use the percent composition formula on table T Use the PPM formula on table T
49	How is concentration (molarity) (number of atoms dissolved) associated with boiling point, freezing point and intermolecular forces?	High concentration (molarity) (#of atoms dissolved) = high boiling point high intermolecular forces low freezing point solutions have a higher Bp and Lower Fp than pure water
50	How is a mixture different from a compound	A mixture has varying proportions of particles. Ex. Brass is 80 – 85 % copper. Notice this is not definite. A compound has definite (fixed) proportions of particles. And a fixed ratio example the mole ratio of Na to Cl must be 1:1 to make table salt
51	What are pure substances?	Elements, compounds are pure substances {ECAPS}
52	What determines if a reaction is successful?	Effective collision determines that.
53	What is effective collision	A collision that has the correct orientation of particles and sufficient colliding energy
54	What does a catalyst do?	 It speeds up the rate of the reaction by 1- Providing an alternate pathway to LOWER the activation energy 2- By correcting particle orientations to allow effective collisions

55	What factors help increase the	Increasing T C C S N P increases the rate of reaction,
	rate of a reaction?	(temp, concentration, catalyst, surface area (powders cause more
		collisions), nature of reactants (more active elements (see table J) allow
		faster collisions, also ionic compounds dissociate and allow more particle
		collision), pressure(only affects gas equations)
56	What does a catalyst do to a	It lowers the peac: potential energy of the activation complex and lowers
	potential energy diagram?	the forward and reverse activation energies.
57	What types of energy does a	(PER) Potential energy of reactants below the first flat line
	potential energy diagram	(PEP) potential energy of products below the second flat line
	display	(FAE)forward Activation energy above the first flat line
		(RAE) reverse activation energy above the second flat line
		(PEAC) Potential energy of the activation complex
58	What is the heat of reaction?	It is the VERTICAL distance between the first horizontal line and the second
		norizontal line
		It is found by calculating the difference between PEP and PER (PEP-PER)
50	What does a pagative or a	If heat of reaction is negative, reaction is evolution
59	what does a negative of a	If heat of reaction is negative, reaction is endothermic
	positive near of reaction	If table I reaction is positive, reaction is endothermic
	according to table (I) indicate?	In table i reactions are read from right to left, the delta H values must be
<u> </u>		EXAMPLE In sign
60	not on the determine in a	exothermic equation
	evothermic or endothermic?	If it ands high its and thermic
61	What does exothermic mean?	- Enter heat endothermic \rightarrow exit heat exothermic
01		- heat of reaction AH on table Lis negative for exothermic rxns
		- BARE \rightarrow break bonds by absorbing heat, release heat when forming
		bonds
		Decomposition rxns are endo (break bonds), synthesis rxns are exo
		(form bonds) this is a general trend, please confirm with table I.
62	What are examples of	Synthesis,, condensations $(g \rightarrow I)$, freezing reactions $(I \rightarrow s)$
	exothermic reactions	
63	What are examples of	Decomposition, melting (s \rightarrow I), evaporation reactions (I \rightarrow g)
	endothermic reactions	
64	Describe the 3 phases of matter	Solids have definite shape and volume
		Gases have no definite shape or volume
		Liquids volume is definite but their shape isn't. 5ml of water is 5ml
		regardless of the conditions. But 5ml of water could be cylindrical or
		rectangular depending on the container
65	How does adding heat to	Entropy is defined as distance between particles also known as the random
	reaction affect the entropy?	arrangement of particles, adding heat will cause the particles to go further
		apart in a random way. So adding heat increases entropy
66	In terms of energy and entropy	Systems in nature (such as plants and human), their energy decreases with
	describe systems in nature.	time and their entropy (random arrangement of particles) increase.
67	What does avogadros say in	All gases that have the SAME volume, have the SAME number of molecules
	regards to gases that have the	at STP conditions (see table A).
66	same volume	
68	Elements	are pure substances that can never be broken down chemically

69	Compounds	Can never be broken down physically but can be broken chemically
70	what can be broken down	Mixtures (ex: solutions) by following different separation techniques.
	physically?	
71	What does the average kinetic	Temperature
	energy measure?	
72	How do I answer heat	Use the heat formulas on table T
	calculation problems?	Is there something melting/freezing? If yes, use the formula Q= Hf*m \rightarrow
		horizontal LINES ON HEAT/COOL CURVE
		Is there something evaporating or condensing? Use the formula Q=
		Is there just a change in temperature? Use the formula
		$O-MC \land T \rightarrow SI \land NTED LINES ON HEAT/COOL CUBVE$
73	What is equilibrium?	
/5		Equilibrium means the rate of forward $rxn = rate of reverse rxn, and$
	What scenarios present	concentration of products and reactants remain constant (NOT FOUAL)
	equilibrium?	
		During a phase change ex: $S \rightarrow L \dots L \rightarrow G$ etc
		During when an electrochemical cell is dead.
		Saturated solutions according to table G are at equilibrium.
		You point to the temperature then move your finger upwards until you
		reach the specified grams in the question.
	How do I use table G to answer	If your finger lies
74	saturation problems?	Below the curve of the substance \rightarrow solution is unsaturated
		Above the curve → solution is SUPER saturated
		ON the curve of the substance solution is SATURATED
		NOTICE TABLE C palvaraliza to 1002 of water Vew mey have to calculate
		NOTICE TABLE G, only applies to 100g of water! You may have to calculate
		the amount of grams to saturate 200g, 50g, of 500g of water.
75	What does saturated mean	The maximum amount of solute possible is dissolved in the 100g of a
/5	what does saturated mean	solution.
76	What is SUPER saturated?	More than the maximum amount of dissolvable solute is in the solvent yes
		you guessed it unsaturated, is less than the maximum solute is dissolved in
		the solvent
77	Soo what's the solute and	Solute is the substance being dissolved usually salt
	solvent again?	Solvent is the substance doing the dissolving usually water
78	HOW do I convert Kelvin to	See table T for the conversion formula K=273 + C
	Celsius? how does heat flow?	Heat always flows from Hot substances to Colder substances
79	How do I solve le Chatellier	If you add a substance onto a system at equilibrium, the system will shift
	equilibrium problems?	away from wherever that substance is located on the given equilibrium
		wherever that substance is located
		Wherever side the equilibrium shifts to will increase the other side will
		decrease
		If pressure is increased on an equilibrium that is made entirely of gases. the
		system will shift to the side with the least total number of coefficients (least
		total moles). If you decrease the pressure, the system will shift to the side
		with the most coefficients.
		A catalyst does not cause an equilibrium to shift or favor any side, it only
		speeds up the reactions equally in both directions.

80	How do I answer mole to mole	Setup coefficier	nts and cross m	ultiply.	
	calculations?		? info	Given Balanced Equation Coefficients	
			х		
81	What's the difference between	Forward rxn shi	fts to product s	side.	
	forward rxn and reverse rxn?	Reverse reactio	n shifts to reac	tants side.	
82	How do you increase the	Decrease the te	mperature and	d increase the pressure	
	solubility of a gas in liquid?			P	
83	How do you increase the	Increase the ter	np. Pressure ha	as no effect on solubility of sol	ids in liquids
	solubility of a solid (salt) in a				
0.4	liquid?			lastrong	<u> </u>
84	molecular compounds and	wolecular comp	bounds snare e	electrons	
	ionic compounds in terms of	Ionic compound	ls transfer elec	trons from the metal loser to	the nonmetal
	electrons	gainer			
85	How do I know if a compound	Check table F			
	is soluble or a precipitate?				
86	What if the compound is not on		umm atrical is r	at palar, agummatrical is pala	
	table F. now do I know II It's	SINAP: S	trical means at	not polar, asymmetrical is pola	r. As atoms on the
	soluble in water (polar) of not	right. ar	nd atoms on th	e top are the same as atoms o	n the bottom.
		Ex: CH ₂	Br ₂)	
	See bullet 23				
87	What is an electrolyte?	Electrolytes are	substances that	at conduct electricity in aqueo	us form (when
	Give examples	mixed in water)			
		lonic compound	ls (metal + non	metal)	
		Acids from table	e K Base	s from table L	
88	What is an Arrhenius acid?	An acid that pro	duces ONLY H	+ ions when dissolved in water	r
		ACID (table K) +	$H_2O \rightarrow H^+$		
89	What is an Arrhenius base?	A base that pro	duces ONLY OF	H ⁻ ions when dissolved in wate	r
		BASE (table L) +	H₂O → OH-		
90	What happens when I mix an	You get salt and	l water in a dou	uble replacement reactions.	
	acid with a base?				
91	What is the process of mixing	Titration, neutra	alization		
92	an acid with a base called?				
52	do acids lose?	BA H AD \rightarrow base	es accept H. aci	ids donate it	
93	If nonmetals gain electrons,	They gain H+			
	what do bases gain	BA H AD \rightarrow base	es accept H, ac	ids donate it	
94	How do I solve all PH	Always draw the	e PH scale and	label it	
	problems?			4 • • • • • •	
		(H+ increase)(A	cids) U7-	14 (Bases) (H+ decrease	e)
		The difference i	n PH signifies t	he number of zeros the H+ cha	anges by.
		Ex: PH changes	from 1 to 3 \rightarrow	3-1 = 2 → 2 zeros H+ change	d by 100 folds
		\rightarrow 1 to 3 is goin	g in the base d	irection of pH scale final answe	er \rightarrow H+
		decreases by 10	0 folds		
		1			

Г

95	How do I answer indicator	See table M. any pH that lies within the range makes the indicator not
	questions?	useful.
		There are two ranges that are indicated by table M for each indicator
		 the lower # to zero which correspond by the color on the left
		- the higher # to 14 which correspond by the color on the right
96	What are the rules for assigning	1- lonely elements = 0
	oxidation numbers to write half	2- charged elements oxidation #= the charge
	reactions	3- hydrogen bonded with a different element is always +1
		4- oxygen bonded with a different element = -2
		5- group 17 bonded with a different element = -1 but must be
		calculated sometimes, do not assume it is always -1.
		6- the sum of all oxidation numbers in a compound = 0
		7- the of oxidation numbers in table E = charge of table E
		8- when Fluorine is bonded with Oxygen, Oxygen's charge is +2
		9- when peroxide is bonded with hydrogen, the oxygen's charge is -1
		10- the elements unknown in the question will always have an oxidation
		number X, you have to calculate it.
97	How do I know if an element	It's oxidation number increase
	was oxidized?	It lose electrons and became more positive
		OILEP \rightarrow oxidation is losing electrons at the product side
98	How do I know if an element is	It's oxidation number decreased
	reduced?	It gained electrons and became more negative
		$RIGER \rightarrow reduction \text{ is gaining electrons}$
99	What is a redox reaction?	It's a reduction oxidation reaction \rightarrow reduction cannot happen without
		oxidation. These two reactions are interdependent.
4.0.0		We write half reactions to display what was oxidized and what was reduced,
100	How do I balance half reactions	$OILEP \rightarrow RIGER$
		All reactions must be balanced first by using coefficient prior to writing
		redox reactions.
		Redox reactions are balanced with electrons and coefficients, Total # of
101	What is an electrochemical call	electrons lost must equal the total # gamed.
101	somposed of	2 Salt bridge
	composed of	2- Conductive wire
		$A_{\rm r} = 2$ half cells
		5- Ionic solutions
102	What is the difference between	$\Delta n \Omega x \rightarrow A$ node Ω vidation (loss of electrons)
102	anode and cathode	Red Cat \rightarrow B eduction (loss of electrons)
103	How Do electrons flow in all	Always from the anode (the more active metal on table J) to the cathode
	electrochemical cell?	(the less active metal).
104	What is the function of salt	Transfer ions between the half cells.
	bridge?	If you remove the salt bridge, cell dies and no electricity is generated
105	What is the function of a	Transfer electrons from the anode to the cathode
	conductive wire	The mass of the anode always decreases because it loses electrons, the
		mass of the cathode always increases because it gains electrons

106	What is the difference between	Voltaic cell is spontaneous (works on its own)
	a voltaic electrochemical cell	Voltaic cell transfer chemical energy to electrical energy
	and a electrolytic	Voltaic cell \rightarrow Anode is negative, cathode is positive
	electrochemical cell?	Voltaic cell is an example of a car battery
		Electrolytic cell is not spontaneous (needs an external source of energy to work)
		Electrolytic cell transfers electrical energy to chemical energy Electrolytic cell anode is positive (connects to the positive end of the battery), cathode is negative (connects to the negative end of the battery). The cathode always gets plated in electrolytic cell.
		Electrolytic cell is used to plate jewelry and clean jewelry
107	What is table J used for?	To indicate which metal is more active than the other or which nonmetal is
		more active than another. This helps us determine electron flow which is
		always from the more active metal to the less active metal.
		Also determine if single replacement reactions will take place: more active
		metals are more likely to replace less active metals in single replacement
		reactions More active metals have more metallic properties higger lesers
109	What are polyatomic ions?	Anything from table E
100	What are polyatornic ions:	Recause their proton to poutron ratio is not 1:1 \rightarrow You have more neutrons
105	why do elements decay	than protons
		Elements decay to become stable and stop decaying when stable
110	What is transmutation	Is a type of nuclear reactions in which the element in the product is not the
110		same as the element in the reactant due to particle emission or radiation.
		All nuclear reactions have elements not compounds! Their atom# and mass
		number will always be displayed. Chemical reactions do not have that.
111	What is the difference between	Natural transmutation starts with one element
	natural transmutation and	92U239 → 2a4 + 90 [™] 231
	artificial transmutation?	Artificial transmutation starts with an element and a particle from table O ${}_{13}Al^{27} + {}_{2}a^4 \rightarrow {}_{15}P^{30} + {}_{0}n^1$
112	Where do I find decay mode?	Table N
	Also known as what particles	
	an element emits	
113	Where do I find masses and	Table O Remember mass on top, mass on top, mass on top
	charges of particles decayed?	Atom# is at the bottom, Atom# is at the bottom
114	Rank alpha beta gamma from	Alpha is the most ionizing particle (most dangerous) but it has the least
	most ionization and lowest	penetration power so it is hard to get it through our skin.
	penetration to least ionization	Gamma is the least ionizing but has the highest penetration power.
145	and most penetration	The rank is: alpha \rightarrow beta \rightarrow gamma
115	How do I write decay	NumberElement ^{mass} → NumberDecay mode ^{mass} + NumberNew element ^{mass}
	equations?	→ trom table N and O
	Write the decay equation of Fr	BOLLOTH LETT NUMBERS SHALL EQUAL BOLLOM RIGHT NUMBERS
		$\mathbf{r}_{\mathbf{r}}^{220} = \mathbf{r}_{\mathbf{r}}^{210} \mathbf{r}_{\mathbf{r}}^{210}$
110	What is the purpose of doing t	$87F1^{-2}$ 7 2dipina + 85At ⁻²
110	what is the purpose of doing a	to convert mass to energy
117	What type of a nuclear reaction	Eusion that's a solar reaction which means it only hannens in stars like the
11/	produces the most amount of	sun
	energy ever!	
L		

118	Nuclear vs. chemical reactions	Nuclear reactions release more energy.	
119	What are these nuclides used		
	for?	-131 \rightarrow treat Thyroid disorders	
	I-131	C-60 \rightarrow treat cancer	
	Co-60	U-238, Pb-206 → geological dating	
	U-238, Pb-206	C-14 → fossil dating	
	C-14	Tc-99 $ ightarrow$ diagnose brain tumors	
	Тс-99		
120	How do I answer half life	Halt Time = Mass =	
	problems?	LITE # Table N * Hall FORM	Fraction
		Remaining Mass	
		This box answers the	
		0 0 original (OG) mass 1	
		1 This box 1/2	
		answers	
		What is the	
		is usually	
		obtained	
		from table N	
		2 1/4	r
		3 1/8	
		4 1/16	.6
		5 1/32	2
		6 1/64	4
121	Which element is present in all	Carbons	
	organic compounds?		
122	Where do I find hydrocarbons?	Table Q	
123	How do I answer naming	Use table P to find the prefix of the longest carbon chain	
	organic compounds questions?	Number the carbons in the longest continuous chain	
		Write the functional group near their allocated carbons	
	Name 1,2 dichloro butane		
		Butane $ ightarrow$ is 4 carbons chain $ ightarrow$ 1,2 is the location of the fur	nctional group Cl
		$C_1 - C_2 - C_3 - C_4$	
124	What are functional groups or	See table R	
	classes of compounds		
125	How do I name ethers or	See the examples on table R, use the same endings. FOLLOW	<i>N</i> THE SAME
	aldehydes or ketonesetc?	FORMAT	
126	How do I name hydrocarbons?	See table Q examples, use the same endings	
127	How do I find how many	Follow the equations on table Q	
	hydrogens are in an organic		
	compound?		
128	What are the names of group	Alkali metals, alkaline earth metal, halogens, and noble gase	es
	1,2,17,18?		
129	What do you know about	They extend from group 3 to the metalloids	
	transitional metals?	They produce colorful solution in water. Ex. Cu + water $ ightarrow$ gr	green water

Why does one element have a bigger radius than another	The element with the bigger radius has more electron shells (energy levels)
within a group	
Why does one element have a bigger radius than another within the same period?	The element with the bigger radius has less protons to attract electron shells
Draw a particle diagram of a solid vs. liquid, vs. gas	ADD ENERGY
	Why does one element have a bigger radius than another within a group Why does one element have a bigger radius than another within the same period? Draw a particle diagram of a solid vs. liquid, vs. gas